De standaardafwijking of standaarddeviatie (vaak aangeduid met de Griekse letter σ voor de populatie en s voor de steekproef), een begrip in de statistiek, is een maat voor de spreiding van een variabele of van een verdeling of populatie.
De sigma-notatie, aangeduid als ∑, wordt in de wiskunde gebruikt als opsommingsteken. Het geeft de som van een aantal opeenvolgende termen van een getallenrij aan, waardoor je een lange som korter kan maken.
Het (is)gelijkteken of gelijkheidsteken (in België veelal met is gelijk aan aangeduid) is de naam van het wiskundige symbool =. Dit teken geeft de gelijkheid aan van de twee operanden waar het tussen staat.
Het teken is de eigenschap dat een wiskundig object positief of negatief is. Ieder reëel getal dat geen nul is, is ofwel positief ofwel negatief en heeft daarom een teken.
Het symbool voor de reële getallen is ℝ.
Wat zijn reële getallen? Je kent al de verzameling van de natuurlijke getallen (N), die van de gehele getallen (Z) en die van de rationale getallen (Q). In die laatste zitten breuken en decimale getallen die of eindig (begrensd) zijn of die repetitief (repeterend) zijn.
een irrationaal getal. Bij een irrationaal getal hoort een breuk die niet-repeterend en oneindig is. Alle irrationale en rationale getallen samen vormen de reële getallen. Deze getallen liggen allemaal op de getallenlijn.
Wiskunde en techniek
In de verzamelingenleer is ∅ (een grote cirkel met een schuine streep) het symbool voor een lege verzameling of voor de onmogelijke oplossingsverzameling. Buiten de wiskunde wordt dit symbool soms gebruikt als afkorting voor niets.
Natuurlijke getallen zijn de getallen 0,1,2,3,4,... We spreken dus over alle positieve gehele getallen en het getal nul. De verzameling van natuurlijke getallen wordt aangeduid met het symbool N.
In de lineaire algebra, een deelgebied van de wiskunde, is een matrix, meervoud: matrices, een rechthoekig getallenschema.
Diakritische tekens kunnen in verschillende talen een verschillende status hebben: Een letter met een diakritisch teken is een aparte letter met een eigen plaats in het alfabet van de desbetreffende taal.
Het uitroepteken noem je faculteit en gebruik je bij berekenen van aantal manieren om n dingen op volgorde te zetten. Bij de eerste formule gaat het om permutatie. Hierbij is de volgorde van belang. Dus wat je als 1 e hebt gekozen, kan je de 2 e keer niet meer kiezen.
Het symbool ∈ is te zien als een gestyleerde letter 'e', wat de eerste letter is van 'element'. Als a ∈A , dan zeggen we ook wel dat 'a tot A behoort'. Evenzo zeggen we dat a niet tot A behoort als a ∈ A.
Met " ∝ " druk je dus uit dat je de constanten ervoor niet precies weet (anders had je wel een "=" gebruikt), maar dat de afhankelijkheid van de grootheid (v in bovenstaand voorbeeld) gegeven wordt door de formule ... (v^2 in bovenstaand voorbeeld).
In de wiskunde
Het getal 2 is het kleinste (en enige even) priemgetal. Even getallen zijn een veelvoud van 2, andere getallen zijn oneven. In het binaire talstelsel worden twee cijfers gebruikt (0 en 1).
Het gewogen gemiddelde is een gemiddelde van een reeks getallen met bijhorende reële positieve gewichten, de weegfactoren, waarvan de waarde het meest beïnvloed wordt door de getallen met het grootste gewicht.
Nul komma nul, echt helemaal niets.
Rekenkunde en algebra
De conclusie is dat het delen van 0 door 0 geen zinnige betekenis heeft.
Het is-niet-gelijk-aan-teken of ongelijkheidsteken is het wiskundige symbool ≠ voor de ongelijkheidsrelatie, dat aangeeft dat de twee operanden aan weerszijden van het symbool niet gelijk zijn aan elkaar.
Het getal i is een zogenaamd imaginair getal en een complex getal. Het wordt een imaginair getal genoemd omdat je de wortel in het kwadraat (vermenigvuldiging van de waarde met zichzelf) van negatieve getallen niet kunt berekenen zonder een positieve uitkomst te geven.
Getallen die je als een breuk kunt schrijven, heten rationale getallen. Getallen zoals wortel 2 of pi, waarvoor dat niet kan, heten irrationale getallen.
Maar ook de reële getallen hebben een beperking: de wortel van een negatief getal kan niet worden uitgedrukt als reeël getal. In een grotere getallenverzameling, die van de complexe getallen C, kan dit weer wel.