Het getal 5 is het grondgetal. Het geheel 5 2 heet de macht.
Het getal 5 is het grondgetal. Het geheel 5 2 heet de macht.
Elk getal, ongelijk aan nul, tot de nulde macht is gelijk aan één. Nul tot een willekeurige macht is nul.
Positieve machten
43 = 4 x 4 x 4 = 64.
105 = 10 x 10 x 10 x 10 x 10 = 100.000. 106 = 10 x 10 x 10 x 10 x 10 x 10 = 1.000.000 = miljoen.
De bekendste macht is een kwadraat (tot de macht 2). Bijvoorbeeld 5 kwadraat is 5 x 5 = 25 (de macht is dan dus 2). We zeggen dan dus dat vijf in het kwadraat 25 is.
10 tot de 5e macht is gelijk aan 105. Het kan worden uitgebreid tot 10 x 10 x 10 x 10 x 10 = 100.000. Als algemene regel geldt dat 10n eenvoudigweg 1 gevolgd door n nullen is, d.w.z. 100 = 1, 101 = 10, 102 = 100, 103 = 1.000, enzovoort.
Een macht geeft aan hoe vaak je een getal (het grondtal) met zichzelf vermenigvuldigt. Bijvoorbeeld, als je 7 drie keer met zichzelf vermenigvuldigt, schrijf je dit als (7 3), wat je uitspreekt als "zeven tot de derde macht" of simpelweg "zeven tot de macht drie".
Antwoord: 1/4 tot de macht 2 is 1/16 of 0,0625 . Laten we de gegeven vraag oplossen door de exponentregels te gebruiken. Hierbij is 2 de macht van de uitdrukking en 1/4 wordt de basis genoemd. ⇒ 1/4 × 1/4 = 1/16 of 0,0625.
Dus 2 tot de macht nul is gelijk aan 1. Eigenlijk wordt elk getal dat niet nul is tot de macht nul 1 door dezelfde redenering.
Om 5 tot de macht 0 te vinden, kunnen we het in exponentvorm schrijven als 5 0 , waarbij 5 de basis is en 0 de macht . Macht moet altijd boven de basis worden geschreven. Hier zien we dat 5 0 in een 0 -formaat staat, dus door de exponentregel te gebruiken, kunnen we zeggen dat 5 0 = 1.
Een kwadraat zorgt ervoor dat het getal zich keer zichzelf gaat doen. Dus in dit geval krijg je dan 7×7=49.
Een macht is het resultaat van het vermenigvuldigen van een getal met zichzelf een bepaald aantal keren. Bijvoorbeeld, de macht 2³ (uitgesproken als "twee tot de macht drie") is gelijk aan 2 × 2 × 2, wat resulteert in 8. De exponent geeft aan hoe vaak de basis vermenigvuldigd moet worden.
De Power Five-conferenties zijn de ACC, Big Ten, Big 12, Pac-12 en SEC . De Group of Five-conferenties zijn de American Athletic Conference, Mountain West Conference, Conference USA, Mid-American Conference en Sun Belt Conference.
Sneltoetsen: Superscript of subscript toepassen
Voor superscript drukt u tegelijkertijd op Ctrl, Shift en het plusteken (+).
Als de exponent een even getal is, dan zal de uitkomst van de macht altijd positief zijn (groter of gelijk aan 0). Het maakt hier niet uit of het grondtal positief of negatief is. Neem bijvoorbeeld 24 = 2 · 2 · 2 · 2 = 16 en dus positief.
Een kwart is hetzelfde als de breuk ¼ . Dit betekent dat we om een kwart van een getal te vinden, het kunnen delen door 4 (de noemer). Om dit te doen, splitsen we ons hele getal eenvoudigweg in 4 gelijke delen. Om een kwart van 24 te berekenen, kunnen we het delen door 4. Als berekening zou dit eruit zien als 24 ÷ 4.
Een macht heeft een grondtal en een exponent. Wanneer n groter dan 0 is, hebben we te maken met een herhaalde vermenigvuldiging. Een macht ziet er als volgt uit: 53. We noemen dan 53 de macht en 5 is het grondtal en 3 is de exponent.
In de rekenkunde en algebra is de zevende macht van een getal n het resultaat van het vermenigvuldigen van zeven instanties van n met elkaar . Dus: n 7 = n × n × n × n × n × n × n. Zevende machten worden ook gevormd door een getal te vermenigvuldigen met zijn zesde macht, het kwadraat van een getal met zijn vijfde macht of de derde macht van een getal met zijn vierde macht.
De machten van 10 zijn van de vorm 10 x , waarbij x een geheel getal is. 10 x wordt gelezen als '10 tot de macht x'. Als x positief is, vereenvoudigen we 10 x door 10 x keer met zichzelf te vermenigvuldigen. Bijvoorbeeld, 10 3 = 10 × 10 × 10 (3 keer) = 1000.
1.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 (= 1048). Een octiljoen is een zeer groot getal.
Antwoord: 10 tot de macht min 3 is 0,001 .
Laten we de oplossing stap voor stap in detail bekijken.