Een supernova heeft een lichtkracht die wel zo'n vier miljard keer groter is dan de lichtkracht van de zon. Dat betekent dat er bij een supernova in één seconde net zoveel energie vrijkomt als bij de zon in vier miljard seconden. Dat is 130 jaar!
Soms in verbluffende patronen, als een soort astronomisch siervuurwerk. Een supernova kan op een afstand van miljarden lichtjaren zichtbaar zijn: het licht overbrugt een groot deel van het zichtbare universum.
Na een supernova kan van de ster een zogenaamde neutronenster overblijven: een klein, superzwaar lichaam, of als de massa daar groot genoeg voor was, een zwart gat, een lichaam zo zwaar en dicht dat zelfs licht niet kan ontsnappen aan zijn zwaartekracht.
Als sterren aan het eind van hun leven komen, zorgen ze voor een gigantische explosie: een supernova. Elementen als magnesium en silicium worden dan de ruimte in geslingerd. Al die nieuwe elementen worden de kosmos in geblazen als de ster aan het eind van zijn leven explodeert als supernova.
De kernen van deze erg grote sterren – ongeveer 95 tot 130 keer de grote van onze zon – kunnen meer dan een miljard graden Celsius worden. Bij deze temperaturen, produceert gammastraling in de kern elektronenparen en hun tegenhangers, positronen.
Hoe zal die explosie eruitzien? Als Betelgeuse ontploft, krijgen we een prachtig spektakel te zien op aarde dat mogelijk tot enkele dagen kan duren. De supernova wordt zo helder dat hij zelfs overdag te zien zal zijn. Het licht wordt wellicht zelfs helderder dan dat van de Maan.
Zo ontstaat een supernova
Als een ster met minstens acht keer de massa van de zon al zijn waterstof heeft verbruikt, verbrandt hij zijn eigen kern tot hij onder zijn gewicht bezwijkt en explodeert als supernova.
als de zon is opgebrand, dan zet-ie uit en slokt daarbij de planeten Mercurius en Venus op. Ook de aarde overleeft dit niet. Daarna krimpt de zon tot een kleine dwergster die heel langzaam afkoelt en uitdooft. Gelukkig is het voorlopig nog niet zo ver.
'Kleine sterren kunnen wel honderd miljard jaar oud worden. Grote worden 'maar' één miljard jaar oud. ' Het proces van verbranding duurt dus zelfs bij heel grote sterren nog ontzettend lang.
Een ster is een bolvormig hemellichaam bestaande uit lichtgevend plasma met daarin voornamelijk (ongeveer 72% van de massa) waterstof en daarnaast ongeveer 26% helium. In sterren is de druk en temperatuur van de inwendige gasconcentratie zo hoog dat er kernfusiereacties plaatsvinden.
Als de ster de omvang heeft van de zon, worden alle planeten tot op een afstand van ongeveer vijf astronomische eenheden naar de rode reus getrokken. In ons zonnestelsel zullen daardoor ook Mars en Jupiter in de opgezwollen zon verdwijnen.
Doordat steeds zwaardere elementen verbrand worden, loopt de temperatuur in de kern hoog op. Hierbij wordt de koolstof verbruikt voor de productie van verschillende elementen, zoals ijzeratomen in de kern. Deze kernreacties verbruiken meer energie dan ze voortbrengen. Ten gevolge hiervan zal de ster exploderen.
Niemand heeft ooit een ster zien sterven, maar waarschijnlijk doven ze langzaam uit. De grootste sterren sterven heel plotseling. Tegen het einde van hun leven zwellen ze op tot rode superreuzen, waarna ze uiteindelijk zichzelf opblazen in een enorme supernova-uitbarsting.
De ster met de grootste schijnbare helderheid (afgezien van de zon!) is Sirius, de hoofdster in het sterrenbeeld Grote Hond. Sirius is vooral in de wintermaanden goed zichtbaar. Hij staat linksonder het opvallende wintersterrenbeeld Orion.
Het einde van de zon
Dat gebeurt over ongeveer 5 miljard jaar, als de zon is opgebrand. Een ster die geen waterstof en helium meer heeft om aan fusie-energie te komen zal in intensiteit afnemen maar heel erg opzwellen. De zon zal naar schatting zo groot opgeblazen worden dat de aarde erdoor wordt verzwolgen.
Verenigd Koninkrijk 2020. Drama van Harry Macqueen. Met o.a. Colin Firth, Stanley Tucci, Pippa Haywood en Peter MacQueen. Amerikaanse romanschrijver Tusker (Tucci) en Britse pianist Sam (Firth), al tientallen jaren een stel, reizen keuvelend in hun camper door het Engelse Lake District.
De kleur van een ster verwijst naar zijn oppervlaktetemperatuur. Een rode ster is relatief koel met een oppervlaktetemperatuur van minder dan 3.000 graden Celsius. Onze zon is een gele ster: op het oppervlak heerst een temperatuur van meer dan 6.000 graden. En blauwe sterren zijn de heetste, 10.000 graden en meer.
De meeste sterren doen er miljoenen jaren over om te sterven. Wanneer een ster als de Zon al haar waterstof heeft opgebrand, zet ze eerst op tot een rode reus. Die kan wel miljoenen kilometers groot worden - groter dan de planeten Mercurius en Venus samen.
Het kan een ster zijn die ongeveer zo zwaar is als de zon, met een kern van gedegene reerd helium, waaromheen waterstof wordt verbrand. Het kan ook een zware ster zijn waar in de kern helium in koolstof wordt omgezet. In zware sterren raakt het helium niet gedegenereerd.
De zon is ons bekendste en belangrijkste hemellichaam, de bron van alle licht en warmte op aarde. En van het leven: zonder zon zou er eenvoudig geen leven mogelijk zijn, zouden we geen energie en geen voedsel hebben.
Na de vernietiging van de maan krijgt onze aarde een prachtige ring. Deze formatie duurt echter niet lang en dan beginnen de aardbewoners met moeilijkheden. Deze hele stapel puin zal op de aarde vallen en lijkt op een asteroïde aanval. Steden zullen worden vernietigd, veel mensen zullen sterven.
Na uitputting van de waterstof in de kern gaat die omzetting verder in de schil. De buitenlagen van de ster gaan opzwellen: de ster wordt een rode reus. De temperatuur in de kern stijgt tot een waarde van ongeveer 100 miljoen graden. Hierbij ontstaan nieuwe kernreacties waarbij helium wordt omgezet in koolstof.
Wat gebeurt er als Betelgeuze ontploft? Als Betelgeuze op een dag ontploft en in een supernova verandert, zal daarbij meer energie vrijkomen dan de zon in haar hele leven afstaat. De lichtflits van de ontploffende Betelgeuze zal zeer duidelijk vanaf de aarde te zien zijn.
Volgens de meeste voorspellingsmodellen voor deze objecten bestaan neutronensterren bijna geheel uit neutronen; in een neutronenster zullen de elektronen en protonen uit normale materie in deze extreme omstandigheden tot bijna alleen maar neutronen combineren.