Sterren ontstaan uit gas en stofdeeltjes uit de ruimte, of eigenlijk uit
Sterren ontstaan door het samentrekken van gaswolken (nevels) die wel enkele lichtjaren – de afstand die licht aflegt in een jaar tijd – breed kunnen zijn. De ineenstorting ontstaat onder de invloed van zijn eigen gewicht en de zwaartekracht. Dit proces kan enkele honderdduizenden jaren duren.
Elke ster is een grote hete gasbol, die zweeft door het heelal. Daaromheen draaien ruimtelichamen, zoals planeten, manen, kometen en ruimtestof. En elke ster geeft licht en warmte. Die energie wordt in de kern van de ster gevormd, doordat verschillende chemische stoffen tegen elkaar botsen en met elkaar reageren.
Een ster is een bolvormig hemellichaam bestaande uit lichtgevend plasma met daarin voornamelijk (ongeveer 72% van de massa) waterstof en daarnaast ongeveer 26% helium. In sterren is de druk en temperatuur van de inwendige gasconcentratie zo hoog dat er kernfusiereacties plaatsvinden.
Een ster bereikt haar eindstadium wanneer haar interne brandstof op is. In de beginfase gebruikt ze waterstof, daarna helium, en op het einde de zwaardere chemische elementen. Als de brandstof opraakt, produceert de ster niet meer genoeg energie en worden er geen kernreacties meer veroorzaakt.
Ongeveer een week lang schijnt de supernova helderder dan alle andere sterren in haar sterrenstelsel. Daarna dooft ze heel snel. Alles wat overblijft is een heel klein, dicht voorwerp - een neutronenster of een zwart gat - omgeven door een uitdijende wolk van zeer heet gas.
De kleur van een ster verwijst naar zijn oppervlaktetemperatuur. Een rode ster is relatief koel met een oppervlaktetemperatuur van minder dan 3.000 graden Celsius. Onze zon is een gele ster: op het oppervlak heerst een temperatuur van meer dan 6.000 graden. En blauwe sterren zijn de heetste, 10.000 graden en meer.
Sterren bewegen natuurlijk niet alleen naar ons toe of van ons af, maar ook zijwaarts. Die beweging is dus te 'zien' aan de hemel (door iedere paar jaar nauwkeurige positiemetingen te doen met telescopen) en deze beweging wordt de eigenbeweging van de sterren genoemd.
'Kleine sterren kunnen wel honderd miljard jaar oud worden. Grote worden 'maar' één miljard jaar oud. ' Het proces van verbranding duurt dus zelfs bij heel grote sterren nog ontzettend lang.
Licht reist met een zeer hoge snelheid van ca. 300.000 kilometer per seconde, maar zelfs de dichtstbijzijnde ster staat al zo ver weg dat het licht er ruim vier jaar over doet om ons te bereiken. We zien die ster dus zoals hij er ruim vier jaar geleden uitzag.
Als een lichtstraal door die trillende lucht gaat, wordt het licht ietwat gebroken. Het resultaat is een fonkelende ster. Het licht van een ster die laag boven de horizon staat, moet een langere weg door de dampkring afleggen. Daarom zullen die sterren meer flikkeren.
Na uitputting van de waterstof in de kern gaat die omzetting verder in de schil. De buitenlagen van de ster gaan opzwellen: de ster wordt een rode reus. De temperatuur in de kern stijgt tot een waarde van ongeveer 100 miljoen graden. Hierbij ontstaan nieuwe kernreacties waarbij helium wordt omgezet in koolstof.
Hoe ontstaan 'vallende sterren'? De zwaartekracht trekt de meteoren aan en deze komen in de dampkring terecht. Door de snelheid waarmee de aarde beweegt, vallen de meteoren met een enorme vaart (met soms wel 60 kilometer per seconde) naar beneden en verbranden door wrijving met de luchtdeeltjes.
Als het gas binnenin de ster verbruikt is zal de ster langzaam uitdoven. Dit duurt echter miljoenen tot miljarden jaren, dus dat kunnen wij mensen nooit zien gebeuren. Wat we wel kunnen zien is dat sommige sterren aan het uiteinde van hun leven exploderen (we noemen dit een supernova).
Sterren worden geboren in enorme, koude wolken van gas en stof, die we 'nevels' noemen. De beroemdste nevel is de Orionnevel, die je met het blote oog kunt zien. Als een middelgrote ster - zoals de zon - miljarden jaren na zijn geboorte aan het einde van zijn leven komt, groeit hij uit tot een rode reus.
Als sterren sterven gebeurt dat met een gigantische explosie, genaamd een supernova. In sommige gevallen ontstaat daarna een zwart gat.
Als het helder is kan je ze goed zien als glinsterende puntjes in het donker, maar we zien maar één van die sterren alleen overdag. Dat is de zon. Heel groot en heel dichtbij. Toch is de zon maar een klein sterretje vergeleken met de andere sterren in het heelal.
Het kan een ster zijn die ongeveer zo zwaar is als de zon, met een kern van gedegene reerd helium, waaromheen waterstof wordt verbrand. Het kan ook een zware ster zijn waar in de kern helium in koolstof wordt omgezet. In zware sterren raakt het helium niet gedegenereerd.
Wel 100 keer groter dan de aarde. Door de felheid waarmee de zon schijnt, zien we overdag de andere sterren niet.
Dat komt door twee dingen: de Zon en de lucht om ons heen. De Zon is een ster net als alle andere, alleen staat de zon veel dichterbij. Daardoor lijkt de Zon wel 10 miljard maal helderder dan de helderste sterren aan de hemel. De lucht om ons heen verstrooit veel van het zonlicht.
De Poolster beweegt vrijwel niet, zodat deze altijd op dezelfde plaats aan de hemel te vinden is. De Poolster was, voor de ingebruikneming van elektronische systemen zoals gps, van groot belang voor de navigatie.
Koude sterren (met spectraaltype K en M) stralen het grootste deel van hun energie uit in het rode en infrarode deel van het elektromagnetische spectrum, en zien er dus rood uit, en hete sterren (met spectraaltype O en B) stralen overwegend in de blauwe en ultraviolette golflengten, waardoor zij er blauw of wit uitzien ...
De heetste ster in het heelal is ongeveer 40.000 graden. CFBDSIR J1458+1013B blijft echter koud omdat het een zogeheten bruine dwerg is. Zulke 'mislukte sterren' hebben een kleinere massa, waardoor er niet voldoende druk ontstaat en het niet warm genoeg wordt om kernfusie van waterstof te laten plaatsvinden.